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1 Gruppentheorie

1.1 Gruppen und Untergruppen

1.1.1 Definieren Sie den Begriff Halbgruppe

1.1.2 Inwiefern ergdnzen Monoide und Gruppen die Halbgruppe?

1.1.3 Nennen Sie zwei Beispiele fiir Gruppen.

1.1.4 Notieren Sie, wann eine Gruppe als abelsch gilt.

1.1.5 Definieren Sie den Begriff Untergruppe

1.1.6 Geben Sie allgemein die erzeugende Menge einer Gruppe an.
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1.1.7 Sei G eine Gruppe und G’ die zugehorige Kommutatorgruppe. Geben Sie G’ an. Was gilt
fir abelsche Gruppen?

1.1.8 Wie nennt man eine Gruppe G, fiir es g € G gibt, sodass G = (g).

1.1.9 Wie nennt man die Kardinalitit |G| einer Gruppe G? Welche Bedingung gibt es?

1.2 Symmetrische Gruppe

1.2.1 Geben Sie die Definition einer Permutation an.

1.2.2 Was ist ein Zykel?

1.2.3 Geben Sie den Trdger einer Permutation o € Sym(X) an.

1.2.4 Erklaren Sie die Eigenschaft disjunkt am Beispiel einer Permutation.
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1.3 Gruppenhomomorphismen

1.3.1 Definieren Sie den Begriff Homomorphismus.

1.3.2 Definieren Sie den Begriff Gruppenhomomorphismus.

1.3.3 Rekapitulation: Definieren Sie die Begriffe injektiv, surjektiv, bijektiv.

injektiv surjektiv bijektiv

1.3.4 Geben Sie die Bedingungen fiir einen Monoidhomomorphismus an.

1.3.5 Wie wird ein bijektiver Gruppenhomomorphismus genannt?

1.3.6 Was ist ein Gruppenautomorphismus in Bezug auf einen Gruppenisomorphismus G?

1.4 Kerne und Normalteiler

1.4.1 Definieren Sie den Kern eines Gruppenhomomorphismus
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1.4.2 Definieren Sie den Begriff Normalteiler.

1.5 Nebenklassen und Quotienten

1.5.1 Definieren Sie den Begriff Linksnebenklasse.

1.5.2 Geben Sie anschlielend die allgemeine Form einer Rechtsnebenklasse an.

1.5.3 Nennen Sie drei Beispiele fiir Nebenklassen.

1.5.4 Sei H < G eine Untergruppe. Was gibt der Index [H : G] an?

1.5.5 Was besagt der Satz von Lagrange?
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1.5.6 Was besagt der Kleine Satz von Fermat?

1.6 Homomorphie- und Isomorphiesatz fiir Gruppen

1.6.1 Beschreiben Sie die Aussage des Homomorphiesatzes.

1.6.2 Was besagt der erste Isomorphiesatz?

1.7 Gruppenwirkungen

1.7.1 Definieren Sie die Wirkung auf eine Menge.

1.7.2 Was besagt der Satz von Cayley?
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1.7.3 Definieren Sie den Stabilisator. Wann ist die Wirkung frei, wann ist sie treu?

1.7.4 Was ist die G-Bahn? Wann ist die Wirkung transitiv?

1.7.5 Wann heiflen zwei Wirkungen konjugiert zueinander?

1.7.6 Geben Sie die Bahnformel an.
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2 Kommutative Ringe, Korper und Zahlentheorie

2.1 Ringe und Korper

2.1.1 Definieren Sie das mathematische Konstrukt Ring.

2.1.2  Wann heifit ein Ring Fins?

2.1.3 Wann heifit ein Ring kommutativ?

2.1.4 Wann ist ein Ring ein Kdrper?

2.1.5  Was sind Ringerweiterung und Unterring fiir eine Inklusion R C S von Ringen?

2.1.6 Rekapitulation: Was sind der i-te Koeffizient und der Grad eines Polynoms f = 3" a, X" €
R[X]?

2.1.7 Definieren Sie den Begriff Nullteiler in einem Ring. Was ist der Integritatsbereich?
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2.1.8 Wie wird ein (multiplikativ) inverses Element in einem Ring R genannt? Wie bezeichnet

man die Teilmenge aller jener (multiplikativ) inversen Elemente von R?

2.2 Ideale, Ringhomomorphismen, Quotientenringe

2.2.1 Definieren Sie den Begriff Ideal.

2.2.2 Was ist ein Hauptideal?

2.2.3 Wie bezeichnet man den Integrititsbereich R, wenn jedes Ideal in R ein Hauptideal ist?

2.2.4 Wann heiflen a,b € R (Ring) assoziert? Wann wird b von a geteilt?

2.3 Ringhomomorphismen

2.3.1 Nennen Sie die Kriterien fiir einen Ringhomomorphismus v fiir eine Abbildung ¢ : R — S

zwischen zwei Ringen.

2.3.2 Wie ist der Kern eines Ringhomomorphismus definiert?
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2.4 Quotientenringe

2.4.1 Definieren Sie den Begriff Quotientengruppe.

2.4.2 Definieren Sie den Begriff Quotientenabbildung.

2.5 Primideale und maximale Ideale

2.5.1 Wann kann ein Ideal Primideal genannt werden?

2.5.2  Wann heifit ein Ideal mazimal?

2.5.3 Sei R Integritétsbereich und p € R\{0} Nichteinheit. Wann heiit p irreduzibel?
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